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Quantum gas in an external field: Exact grand canonical expressions and numerical treatment

P. N. Vorontsov-Velyaminov, S. D. Ivanov, and R. I. Gorbunov
Faculty of Physics, St. Petersburg University, 198904 St. Petersburg, Russia

~Received 14 July 1998!

An exact Feynman-type presentation of the grand canonical partition function and averages as series over
cycles for a system of noninteracting identical particles with a spin in an arbitrary external field is derived, and
a numerical procedure for obtainingm(b) and other dependencies at constantN is developed. It is shown that
the same series can be obtained also from the conventional form of the grand potentialV ~i.e., a sum over
single-particle energy states!. Numerical calculations at constantN are carried out for quantum gas of bosons
and fermions in three-dimensional harmonic field and in the Po¨schl-Teller potential.@S1063-651X~99!03301-2#

PACS number~s!: 05.30.Fk, 05.30.Jp, 02.70.2c
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I. INTRODUCTION

Development of new computer simulation schemes
ways implies an appropriate means of their test. The m
desirable in this aspect is to compare simulation data w
analytical expressions which eventually exist or can be
rived in certain particular cases.

In @1# we proposed a variant of path integral Monte Ca
~MC! method combining the previously existed ‘‘bead’’ an
Fourier approximations, which are the extreme~and nonop-
timal! cases of our approach. For a single particle in an
ternal field we tested our method reproducing the grou
state energy and distribution function of an electron in
hydrogen atom and canonical averages of the harmonic
cillator.

The proposed method was extended in@1# also to systems
of interacting identical particles~fermions and bosons! and
appropriate MC procedures were created. To test them p
erly we arrived at an urgency to find cases described ana
cally. Exact expressions were obtained indeed for the can
cal partition function and averages in the case
noninteracting quantum particles with a spin
d-dimensional harmonic field@1# ~for d51 and s50 they
reproduce preceding results of@2#!. With their aid tests of
MC data were performed in@1# for systems with the numbe
of particlesN52,3. Unfortunately, canonical ensemble e
pressions become more and more cumbersome asN in-
creases.

Meanwhile it is known that the grand canonical approa
yields sometimes quite simple expressions since in this c
the restriction on the constant number of particles is be
removed. This was one of the motivating points of t
present work. The most important for us in this aspect is
Feynman expression for the grand potentialV in the form of
a series over powers of activity for a system of free spinl
bosons in a box@3#. Coefficients of this series include ex
actly determined canonical partition functions for cyclic pe
mutations ~cycles! of increasing number of quantum pa
ticles, hence the whole expression is often called ‘‘a se
over cycles.’’ Recently a similar series for a system of no
interacting spinless quantum particles in a harmonic fi
was derived in@4#.

In the present work a Feynman-type series over cycles
the grand potentialV is constructed in a more general cas
PRE 591063-651X/99/59~1!/168~9!/$15.00
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i.e., for a system of noninteracting identical particles~bosons
and fermions! with a spin in anarbitrary external potential
field ~including @3# and @4# as specific cases!.

The structure of the paper is as follows. Section II co
tains transformation of the canonical partition function, tra
sition to the grand canonical ensemble, creation of the gr
potentialV, and averages. The obtained relations are t
written down for specific cases ofd-dimensional isotropic
harmonic field and Po¨schl-Teller potential@5,6#. It is shown
as well that the canonical partition function for a cycle ofn
noniteracting particles at temperatureT is equal to that for a
single particle atT, n times less. We demonstrate also ho
the series over cycles forV can be derived from the conven
tional series over single particle energy states. The calc
tion scheme is described and numerical results for temp
ture dependencies of chemical potential, energy, h
capacity, and other averages at constantN for systems of
noninteracting bosons and fermions both in harmonic a
Pöschl-Teller fields are presented in Sec. III. Section IV co
tains concluding remarks.

II. SYSTEM OF IDENTICAL NONINTERACTING
PARTICLES WITH A SPIN IN AN EXTERNAL FIELD

A. Canonical ensemble

We consider a system ofN identical particles with a spin
Canonical partition function of such a system can be p
sented as a symmetrical~antisymmetrical! sum over allN!
permutationsP in the density matrix of the canonical part
tion function for a system ofN distinguishable particles
Z(D)(b;P) @3#:

Z~S,A!~b!5
1

N! (
$P%

j [ P]Z~D !~b;P!, ~1!

where j561 for bosons and fermions corresponding
@P#—parity of the permutationP, b5T21—inverse tem-
perature. If the Hamiltonian of the system does not dep
on spin,Z(D)(b;P) is being split into a product of the spi
and the coordinate parts:

Z~D !~b;P!5Zsp
~D !~P!Zc

~D !~b;P!. ~2!

The coordinate part can be written in the form
168 ©1999 The American Physical Society
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Zc
~D !~b;P!5E r~x,Px;b!dx, ~3!

wherex5(rW1 , . . . ,rWN) is thedN-dimensional vector,d, di-
mensionality,r(x,x8;b)5^xue2bĤux8&, the density matrix
for a system of spinless distinguishable particles in the co
dinate presentation,Ĥ, Hamiltonian of the system.

The spin part in Eq.~2! has the form

Zsp
~D !~P!5(

$s%
)
i 51

N

d~s i ,Ps i !, ~4!

whered(s i ,s j ) is the Kronecker symbol. Sum in Eq.~4! is
over all 2s11 values of the spin projection for each partic
and s is the value of its spin. Note that for the identic
permutationP0 it yields: Zsp

(D)(P0)5(2s11)N @e.g., for elec-
trons s51/2 andZsp

(D)(P0)52N]. Consider that firstn par-
ticles in theP permutation are involved in a cycle. Then it
possible to make an independent summation over varia
s i , included into this cycle:

(
s1 ,s2 , . . . ,sn

d~s1 ,s2!d~s2 ,s3! . . . d~sn21 ,sn!d~sn ,s1!

52s11, ~5!

i.e., each cycle, regardless of its length, yields an equal c
tribution into Eq.~4! and the spin part is expressed as@7#

Zsp
~D !~P!5 )

n51

N

~2s11!Cn~P!5~2s11!(n51
N Cn~P!, ~6!

whereCn(P) is the number of cycles involvingn particles in
the P permutation. In the canonical ensembleCn(P) must
satisfy the fixed number of particles’ condition for eachP:

(
n51

N

nCn~P!5N. ~7!

The coordinate partZc
(D)(b;P) can be also presented i

the form of a product over cycles analogous to Eq.~6! for a
system ofnoninteractingparticles in an arbitrary externa
field. Indeed, as far as in this caseĤ5( i 51

N Ĥ1( i ), where

Ĥ1( i ) is a single-particle Hamiltonian of thei th particle,

r~x,x8;b!5^xue2bĤux8&5)
i 51

N

r1~rW i ,rW i
8;b!. ~8!

Here r1(rW i ,rW i
8;b)5^rW i ue2bĤ1( i )urW i

8&, a single-particle den-
sity matrix for thei th particle. Consider again that the c
ordinates of firstn particles in theP-permutation form a
cycle. Then the following independent factor inZc

(D)(b;P)
emerges:

Zn~b!5E r1~rW1 ,rW2 ;b!r1~rW2 ,rW3 ;b! . . .

3r1~rWn ,rW1 ;b!)
i 51

n

drW i ~9!
r-

,

es

n-

The remaining part ofZc
(D)(b;P) splits into similar factors

~partition functions of cycles!, and the wholeZc
(D)(b;P) is

now presented as a product:

Zc
~D !~b;P!5 )

n51

N

Zn~b!Cn~P!. ~10!

Finally as far as eachn cycle in theP permutation is a
result ofn21 pair transpositions@3,8#, the parity@P# in Eq.
~1! is determined as@P#5(n(n21)Cn(P). Now, substitut-
ing @P# in this form together with Eqs.~2!, ~6!, and~10! into
~1! we arrive at the following expression:

Z~S,A!~b!5
1

N! (
$P%

j(n51
N

~n21!Cn~P!~2s11!(n51
N Cn~P!

3 )
n51

N

Zn~b!Cn~P!

5
1

N! (
$P%

)
n51

N

@j~n21!~2s11!Zn~b!#Cn~P!.

~11!

According to the group theory the permutation gro
splits into classes, each of the latter having its specific cy
structure@a set of indicesCn(P)]. Hence the sum over per
mutations, in Eq.~1! or in Eq. ~11!, can be reduced to the
sum over classes~see@3,7#!. For Eq.~11! it yields

Z~S,A!~b!5
1

N! (
$Cn%

M ~$Cn%!)
n51

N

@j~n21!~2s11!Zn~b!#Cn.

~12!

Summing over classes is presented in Eq.~12! as a sum over
all sets $Cn%, provided the condition~7! is fulfilled. The
number of elements in each classM ($Cn%), is determined as
@3,7#

M ~$Cn%!5
N!

)
n51

N

~Cn!nCn!

. ~13!

As a result we obtain the expression for the canoni
partition function~11! in the form

Z~S,A!~b!5 (
$Cn%

)
n51

N an
Cn

Cn!
, an5

j~n21!~2s11!Zn~b!

n
.

~14!

B. Grand canonical ensemble

Now we start with the general expression for the gra
canonical partition function:

J~S,A!~b,m!5 (
N50

`

lNZN
~S,A!~b!. ~15!
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Here l5ebm is the activity,m the chemical potential, and
ZN

(S,A)(b) the canonical partition function for a system ofN
identical particles.

Substituting expression~14! into Eq. ~15! and following
Feynman@3#, we arrive at a set of transformations:

J~S,A!~b,m!5 (
$C1 ,C2 , . . . 50%

`

)
n51

`
@lnan#Cn

Cn!

5 )
n51

`

(
Cn50

`
@lnan#Cn

Cn!
5 )

n51

`

e~lnan!. ~16!

It is taken into account that summation overN @Eq. ~15!# in
the infinite limit removes the restriction~7! imposed on the
number of cyclesCn and hence the sum over eachCn is
performed independently from zero to infinity.

For the grand potentialV we get

bV~S,A!~b,m!52 ln@J~S,A!~b,m!#

52~2s11! (
n51

`
j~n21!Zn~b!

n
ln. ~17!

The obtained series over powers of activity~17! is valid
for a system of noninteracting identical particles in anarbi-
trary external field. Coefficients of the series contain cano
cal partition functions for cycles ofn particlesZn(b) (1
<n,`).

Note that for

Zn~b!5hn5VS m

2p\2bn D 3/2

~18!

with j51,s50 we get the Feynman expression for the fr
spinless boson gas in a box of volumeV @3#. For isotropic
d-dimensional oscillator field

Zn~b!5S 2 sinh
\vbn

2 D 2d

~19!

~see e.g.,@1,4#!, and Eq.~17! determines theV potential in
this case.

For noninteracting particles we can point to the followi
important fact:

Zn~b!5Z1~nb!. ~20!

It means that the canonical partition function for a cycle on
particles at the inverse temperatureb is equal to that of a
single particle atb timesn. Indeed, starting with the parti
tion function for a single particle atnb:

Z1~nb!5E drW1r1~rW1 ,rW1 ;nb!, ~21!

where r1(rW,rW8;nb)5^rWue2nbĤ1urW8&, and using the identity
e2nbĤ15(e2bĤ1)n, we get
i-

Z1~nb!5E r1~rW1 ,rW2 ;b!r1

3~rW2 ,rW3 ;b! . . . r1~rWn ,rW1 ;b!

3)
i 51

n

drW i . ~22!

This expression exactly reproduces~9! for Zn(b). Note that
for specific cases~18! and ~19! the validity of Eq. ~20! is
observed directly.

As a consequence of Eq.~20! it follows that the grand
potentialV at b for our system is expressed only through
single-particle canonical partition function at a set of incre
ing inverse temperaturesnb ~decreasingT). If the energy
spectrum of a particle in the given field is known thenZ1(b)
can be calculated at any temperature and henceV can be
determined. Note that forb→` Z1(b) approaches its
ground state term,e2bE0 ~1 if E050).

Finally, it is instructive to demonstrate another way
obtaining the series~17! for V. We start withJ (S,A)(b,m)
for the system of noninteracting identical particles in a st
dard form@9#:

J~S,A!~b,m!5)
kW

JkW
~S,A!

~b,m!, ~23!

JkW
~S,A!

~b,m!5@~12jle2bEkW!2j#~2s11!.

HereJkW is the grand canonical partition function for th
kW th single-particle state (kW , d-dimensional vector with inte-
ger components!, EkW is its energy, andb,m,l,j,s are the
same as determined earlier@e.g., in Eqs.~14!–~17!#. For V
we get

bV~b,m!52 lnJ~b,m!5j~2s11!(
kW

ln~12xkW !,

~24!
xkW5jle2bEkW.

Using series decomposition for the ln function,

ln~12xkW !52 (
n51

` xkW
n

n
,

we transform the right-hand side of Eq.~24!:

bV~b,m!52j~2s11!(
kW

(
n51

` xkW
n

n

52~2s11! (
n51

`
jn11ln

n (
kW

e2nbEkW

52~2s11! (
n51

`
jn21Z1~nb!

n
ln. ~25!

The latter expression coincides with Eq.~17! if Eq. ~20! is
taken into account.
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C. Thermodynamical quantities in the form of cycle series

Differentiating Eqs.~17! and ~25! over m, we obtain the
following expression for the number of particlesN:

N52S ]V

]m D
b

5~2s11! (
n51

`

jn21Z1~nb!ln. ~26!

For the energy we use the relation@3#

E5
]

]b
~bV!m1mN ~27!

and finally we get

E52~2s11! (
n51

`

jn21ln
dZ1~x!

dx
, ~28!

wherex5bn.
In particular, for thed-dimensional isotropic oscillato

field:

N5~2s11! (
n51

`

jn21S 2 sh
\vnb

2 D 2d

ln, ~29!

E5
d\v

2
~2s11! (

n51

`

jn21coth
\vnb

2 S 2 sh
\vnb

2 D 2d

ln.

~30!

It is useful also to haveN andE in the form of series over
single-particle states

N5(
kW

NkW , NkW5
~2s11!

eb~EkW2m!2j
, ~31!

E5(
kW

NkWEkW ~32!

(EkW is the energy of thekW th state!.
For d-dimensional isotropic oscillatord-dimensional sums

~31! and ~32! can be reduced to one-dimensional sums w

Nk5
f k~d!~2s11!

eb~Ek2m!2j
, ~33!

whereEk5\v@k1(d/2)#, andf k(d)5Ck1d21
d21 is the degen-

eracy factor.
It is convenient to count the chemical potential from t

ground-state level while in the above relations it is coun
from the bottom of the potential well. In the oscillator case
yields the following substitutions in Eqs.~29!, ~30!, and~33!:

m2
d

2
\v→m, sinh

\vbn

2
→12e2\vbn. ~34!

III. NUMERICAL CALCULATIONS

A. General approach

Relations~17!, ~26!, ~28!–~30!, ~24!, and ~31!–~33!, ex-
plicitly determine thermodynamic averages as functions
d
t

f

the grand canonical ensemble variablesT, m. To get depen-
dencies at constant number of particlesN we start with rela-
tions ~26! and ~31!, which are treated now as equations f
obtaining curvesm(T) at constantN. Then for each fixedN
we calculate energyE as a function ofb or T5b21 ~it can
be also presented as a function ofm). In this way, based on
grand canonical ensemble relations, we can get explicit
pendencies of calculated quantities onN andb, i.e., we re-
produce canonical averages.

The (m,T) pairs were chosen so as to reproduce the gi
value ofN within the fixed accuracyd (d was taken equal to
1025 for N from 10 to 1000). Truncating series~26! and~31!
we compared consecutive terms of each series with the s
d. The first term whose modulus did not exceedd was taken
as the last term in the truncated series. For each tempera
the chemical potential was determined with the aid of
half-division method. It is evident that series over cycl
~17!, ~26!, and ~29! converge better at high temperature
while series~24!,~31!–~33! over single particle states do s
at low T. So in the range ofm.0 for fermions we used the
series~31! ~in this region series over cycles absolutely d
verge!. In the regionm<0, both series~31! and ~26! were
used for fermions as well as for bosons.

The practice of calculations with the aid of series ov
cycles~26! showed that the number of terms taken into a
count for attaining the required accuracy increased ind
with the decrease ofT due to the nature of this series. So
was used mainly at high temperatures.

Coefficients in Eq.~26! include canonical partition func
tions of a single particle in a one-dimensional field~to the
power ofd). If this partition function is determined analyti
cally ~as in the case of the harmonic field! the series~26! for
m,0 can be calculated quite fast both for bosons and fer
ons. However in most cases, e.g., for the Po¨schl-Teller po-
tential, the canonical partition functionZ1(b) has to be cal-
culated numerically based on the known energy spectr
Convergence ofZ1(b) falls with the increase ofT and, as far
as this sum must be calculated with accuracy higher than
of Eq. ~26!, the total computational rate in this case fa
noticeably, especially asT increases.

The series over single particle states~31! is more difficult
for calculations since in the general case it is ad-dimensional
one. The number of terms to be taken into account at fi
accuracy is much greater than that for the series over cy
and it grows further with the increase ofT. Practically, cal-
culations at temperature higher than a certain limiting val
dependent on parameters of the system, appear to be im
sible. Meanwhile for low temperatures Eq.~31! provides
quite fast calculations with the required accuracy both
bosons and fermions. Calculations on a Pentium PC to
usually, several minutes for eachN.

As a rule there exists a rather large temperature interva
which efficiency ranges of both series overlap, i.e., both
them can be practically used for calculations. In the range
this overlapm(T) dependencies for fixedN, obtained from
Eqs.~26! and~31!, always coincided within the required ac
curacy.

B. Oscillator field

To estimate the range of interest in them-T plane it is
convenient to determine ‘‘reference points’’ at eachN, i.e.,
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the chemical potential at zero temperature and temperatu
zero chemical potential for fermions.

At T50 relations~31! and ~32! for the case of the oscil
lator are reduced to

N

2s11
5

1

2 (
k50

Kf

~k11!~k12!, ~35!

E

2s11
5

1

2 (
k50

Kf

~k1 1
2 !~k11!~k12!, ~36!

whereKf corresponds to the Fermi energym05Ef5Kf ~in
units of \v). If the energy is counted also from the groun
state then1

2 in the first parentheses of Eq.~36! should be
omitted. It is easy to show that summation in Eqs.~35! and
~36! yields ultimately

N

2s11
5

1

6
~Kf11!~Kf12!~Kf13!, ~37!

E

2s11
5

1

8
Kf~Kf11!~Kf12!~Kf13!. ~38!

For high values ofN, Kf is close to@6N/(2s11)#1/3. For
the specific energy we get

E

N
5

3

4
Kf . ~39!

Note that for nonrelativistic quantum fermi gas in a box t
specific energy atT50 is equal to3

5 Ef , while for the ul-
trarelativistic case it is equal to34 Ef @9#. The coincidence of
our result~39! with the latter can be caused by similar ener
dependence for the density of states~in both cases it is a
square of energy!.

Now we write down the expression~31! for fermions at
m50 taking into the account Eq.~34!:

N

2s11
5

1

2F(k

k2

ebk11
13(

k

k

ebk11
12(

k

1

ebk11
G .

~40!

These sums can be calculated analytically if we red
them initially to appropriate integrals@9#. Finally, we get

N

2s11
5

1

2
@T3~12 1

4 !G~3!z~3!

13T2~12 1
2 !G~2!z~2!12T ln 2#

5T3S 0.7531.20210.75
p2

6

1

T
1 ln 2

1

T2D . ~41!

Here G( ) and z( ) are g and z functions, z(3)
51.202; z(2)5p2/6. At greatN ~andT) the left-hand side
of Eq. ~41! is practically equal to the first term, 0.9015T3.

For bosons the chemical potential is negative and
strictly equal to zero only atT50. So, atm close to zero, it
can be set equal to zero in the first two sums~31! with their
at

e

is

following substitution by integrals. The last term of Eq.~31!
should be presented as a sum in which its first item (k50)
keeps the valuemÞ0.

As a result~on calculating integrals@9#!, we arrive at the
expression

N

2s11
5T3

1

2
G~3!z~3!1T2

3

2

p2

6

1 (
k51

`
1

ebk21
1

1

e2bm21
. ~42!

For greatN the bose condensation starts at high temperatu
and for estimation of the condensation pointTc , only the
first term in Eq.~42!, containingT3, should be saved and

Tc5S N

~2s11!

1

1.202D
1/3

. ~43!

In the rangeT,Tc with the decrease ofT the last term yields
the major contribution into Eq.~42! being the number of
particles in the ground state.

In the limit of high temperatures (b\v!1,m,0) the de-
pendencym(b) is determined from the series~29! by saving
only its first term,

N

2s11
5

ebm

~b\v!3
, m5T lnS N

2s11
~b\v!3D . ~44!

Comparing Eq.~44! with the expression for the chemica
potential of the Boltzmann gas in a box of volumeV,

m5T lnS N

V
L3D , ~45!

whereL5(2pb\2/m)1/2 is the thermal wavelength, one ca
express Eq.~44! in a similar form, introducing effective vol-
umeVe f :

m5T lnS N

Ve f
L3D , Ve f5~2s11!S 2pT

mv2D 3/2

. ~46!

C. Pöschl-Teller potential and limiting cases

This potential is determined as@5,6#

V~x!5
V0

2 Fk~k21!

sin2~ax!
1

l~l21!

cos2~ax!G , V05
\2a2

m
~47!

with parametersk.1,l.1 and the range ofx:0<x
<p/2a. It has a smooth bottom and approaches asympt
cally vertical walls at limiting values ofx. The Schro¨dinger
problem for this potential has an exact solution with eige
values En5(V0 /2)(k1l12n)2, n50,1, . . . . We con-
sider only the symmetrical case of Eq.~47!, k5l, with

V~x!52V0

k~k21!

sin2~2ax!
~48!
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and energy spectrumEn52V0(k1n)2. Introducing dimen-
sionless eigenvalues counted from the ground state we
write

Ẽn5
En2E0

4V0k
5

1

2k
@~k1n!22k2#5nS 11

n

2k D . ~49!

This form of Ẽn is helpful in obtaining two limiting cases o
Pöschl-Teller potential. Atk51 it formally yields a box
with hard walls and flat bottom while fork→` it ap-
proaches the harmonic potential.

Indeed, the energy levels for a box of widthL are
Ek5(\2/2m)(p/L)2k2[«k2, k51,2, . . . . Substitutingk
5n11, n50,1, . . . and introducing again dimensionless e
ergies counted from the ground state, we get

Ẽn5
En2E0

2«
5

~n11!221

2
5nS 11

n

2D , n50,1, . . . .

~50!

This coincides with Eq.~49! for k51 as long as 2V0
52\2a2/m5(2\2/m)(p/2L)25« if we assume L
5p/2a.

The analogous procedure for harmonic field eigenval
En5\v(n1 1

2 ), n50,1, . . . yields

Ẽn5
En2E0

\v
5n. ~51!

It coincides with Eq.~49! for k→` if we assume\v
54kV0 or v54(\/m)ka2.

As long as the productbm(b) exhibits linear behavior in
ln T scale at high temperatures both for gas in a harmo
field and in a box@see Eqs.~44! and ~45!# we can use these
asymptotes for checking our numerical results.

In units adopted above we get

bm~b!5 lnS N

2s11D1
3

2
ln

2

p
2

3

2
ln T ~52!

for the box and

bm~b!5 lnS N

2s11D23 lnT ~53!

for the three-dimensional harmonic field.

D. Obtained data

Computational results for systems in a three-dimensio
isotropic oscillator field are presented in Figs. 1–3. For
Pöschl-Teller potential results are shown in Figs. 4 and 5

Figure 1 givesm(T) dependencies for bosons and ferm
ons in aT-interval range from zero up to temperatures wh
difference between two statistics almost vanishes. Bothm
andT are presented in\v units. Each pair of curves corre
sponds to a fixed value ofN/(2s11) from 10 to 104 ~for
bosons withs50 it is the number of particlesN, for fermi-
ons withs51/2 it is N/2). Condensation for bosons becom
more and more abrupt with the increase ofN, which is par-
ticularly well observed in the inset of Fig. 1, and is al
revealed in Fig. 2.
an
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The T dependencies of averages~energy, heat capacity
population of levels! for the same values ofN are presented
in Fig. 2.Tc units forT are used to equalize scales for curv
within the whole largeN range,Tc being determined by Eq
~43!. Data for bosons reproduce well canonical averages
tained in@4# with the aid of recurrent relations in the canon
cal ensemble. As far as very accurate comparison of b
data requires recalculations according to relations from@4#,
we used another approach to check the difference betw
true canonical averages and results obtained within our
cedure: we calculated theT dependency of energy for fermi
ons,s51/2, in oscillator field by the present method for th
smallest number of particles,N52,3 and compared them
with exact canonical expressions from our previous pa
@1#. The relative difference of these results as a function oT
~in \v units!, Fig. 3, testifies that even forN52 maximum
deviation~at T50.3) does not exceed 7%. ForN53 it shifts
to higherT and now is less than 3%. For limiting temper
tures (T→0,T→`) the deviation vanishes. It is evident th
for N about 10 we can completely neglect the differen
between results of averaging in both ensembles. It justi
indeed application of the present approach: numerical ca
lation of averages at fixedN with the aid of grand canonica
ensemble relations avoiding cumbersome formulas of
type @1# or recurrent relations@4#.

It is worth mentioning here that while energy, Fig. 2~a!,
was calculated according to the suggested scheme, i.e., u
series~30! and ~32!, the heat capacity, Fig. 3~b!, was deter-

FIG. 1. m vs T dependencies for boson and fermion gases i
3D isotropic harmonic field at constantN/(2s11); curves 1–4
correspond toN/(2s11)510,102,103,104. The inset presents
curves 1 and 2 for bosons in larger scale. Curve 5 is the Boltzm
gas in the case 4.m andT are in\v units.
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FIG. 2. Equilibrium properties vsT for boson and fermion gases in 3D harmonic field at constantN/(2s11): ~a! specific energy, curves
1–4 correspond toN/(2s11)510,102,103,104 ~bosons!, 5 and 6 to 103 and 104 ~fermions!; ~b! specific heat capacity: 1–4, for bosons
in case~a!, 5, fermions,N/25104; ~c! specific population of the ground state for bosons, 1–4 as in cases~a! and~b!; ~d! population of levels
for fermions,N/25104: 1, ground state, 2, 0.5Ef , 3, Ef , 4, 1.1Ef , 5, corresponds to the Boltzmann dependence for the ground-state
r
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mined by numericalT differentiation of the above data fo
the energy. An attempt to get heat capacity by direct diff
entiation of series~30! and ~32! yielded inadequate result
especially forT above the condensation point for bosons.

The m(T) dependencies for boson and fermion gases
the three-dimensional~3D! Pöschl-Teller potential for a se
of k is shown in Fig. 4. Limiting valuesk51 and k5`
correspond to the cubic box and to harmonic field. In Fig
we present correspondingbm(b) versus lnT curves@T in
Fig. 4 and 5 is in 4V0k units, see Eq.~49!#. It is clearly seen

FIG. 3. Relative difference between canonical and grand can
cal energies vsT (\v units! for fermions,s51/2 in the 3D har-
monic field. Curves 1 and 2 are forN52 and 3.
-

n

5

i-
FIG. 4. m vs T dependencies for boson and fermion gases i

3D Pöschl-Teller field,N/(2s11)510. Curves 1–4 are for value
of k: 1 ~cubic box!, 2, 4, and oscillator field (k→`). m andT
are in 4V0k units, see Eq.~49!.
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how these curves approach asymptotes with slopes incr
ing with the increase ofk, from 21.5 for the cubic box
@curve 1, Eq.~52!# to 23 for the harmonic field@curve 6, Eq.
~53!#. It is interesting to note that for the harmonic field th
asymptote is monotonously attained from below while in
case of the cubic box it is attained nonmonotonously fr
above with crossing of both lines at a finiteT. The
asymptotic behavior of the curve 1 is presented in detai
the inset, Fig. 5. The maximum deviation of both lines
approximately 0.19. We made similar calculations
N/(2s11)5102,103 and observed the same behavior w
maximum deviation falling to 0.09 and 0.03, respectively
means that the ‘‘effect of intersection’’ would complete
vanish with further increase ofN.

We can compare values of Fermi energies obtained in
calculations with the expression for macroscopic quant
fermion gas@9#:

Ef5S 6p2
N

~2s11!VD 2/3 \2

2m
, ~54!

or in adopted units,

Ef5
1

2S 6

p

N

2s11D 2/3

. ~55!

This comparison is presented in Table I. It is seen how
relative difference tends to zero with the increase ofN.

Finally it could be also noted that Feynman’s express
for hn @Eq. ~18!#, strictly speaking, does not present the c

FIG. 5. bm(b) dependencies in lnT scale for boson gas in 3D
Pöschl-Teller field, in a range ofT including high-temperature lim-
iting behavior, N/(2s11)510. Curves 1–6 are for values o
k: 1 ~cubic box!, 2, 4, 10, 30, and harmonic field (k→`).
Straight lines for 1 and 6, Boltzmann asymptotes for correspond
cases. The inset shows the difference of curve 1 and the Boltz
limit in a larger range of temperatures.T is in 4V0k units as in
Fig. 4.
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nonical partition function for a single particle in a box sin
it does not tend to 1 forT→0. We compareh1 @Eq. ~18!#
with Z1 for this case calculated numerically, Fig. 6.
adopted units their ratio as a function ofT is

h1

Z1
5S Ap

2
T

(
k50

`

e2
k~11k/2!

T
D 3

. ~56!

It tends ~though rather slowly! to 1 at large temperature
while at T→0 it falls to zero. It is interesting that these tw
kinds of behavior are separated by a pronounced peak.

IV. CONCLUDING REMARKS

We have shown that Feynman presentation of the gr
canonical potentialV as a series over cycles can be treated
a more general sense than it was meant initially, i.e., i
valid for a system of noninteracting identical particles with
spin of both statistics in an arbitrary external field.

g
an

TABLE I. Comparison of Fermi energy values for increasin
number of particlesN. Ef

(c) , our calculations;Ef
(a) , expression

~55!; D, relative difference.

N

2s11 Ef
(c) Ef

(a) D

10 4.31 3.57 0.21
102 19.6 16.6 0.18
103 85.1 77.0 0.10
104 376.0 357.3 0.05

FIG. 6. Ratio ofh1 @Eq. ~18!# to Z1 for a cubic box vsT. In the
inset it is shown at a much largerT scale.T is in 2« units @see Eq.
~50!#.
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A numerical procedure based on grand canonical exp
sions was developed enabling us to obtain very accura
the equilibrium data at constantN ranging from 10 to 104. In
principle, there is no problem with increasingN by several
orders. In the case of harmonic field when the canon
single-particle partition function exists in a closed form c
culations run particularly fast. In cases when the sing
particle energy spectrum is known but the partition funct
cannot be presented in a closed form our numerical pro
dure is still effective though it becomes noticeably slow
Such is the case for the Po¨schl-Teller potential considered i
this work.
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.

It should, finally, be pointed out that for most potentia
the single-particle Schro¨dinger problem has no exact solutio
and hence its spectrum is unknown. In this case we hav
apply another procedure to estimate the single-particle
nonical partition function that enters into series over cycl
An aproach that could be helpful here is the Monte Ca
method in the expanded esemble@10#, which enables us to
calculate the difference between the unknown partition fu
tion and that of the reference system~e.g., of the oscillator!.
Another question also exists: how to use~if possible! facili-
ties developed here for systems of quantum noninterac
particles to the case when interaction is being switched o
v.
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